## **ENCH 486/686.** A Survey of Sensors and Instrumentation

The purpose of this course is to provide a detailed understanding of biological sensing as well as the underlying engineering principles used to detect biomolecules such as DNA, proteins, and cells in complex environments and samples. The course will center heavily around biological sensing modalities used by bioengineers and synthetic biologists for applications in diagnostics and environmental monitoring. A heavy emphasis will be placed on developing a fundamental understanding of biological design principles by leaning heavily on literature to inform the lectures, class discussions, and assignments.

**Logistics:** The course is currently scheduled to be from 4:30 to 7:00 PM on Tuesdays in Sondheim on the main campus.

## Brief overview of topics to be covered (Subject to Change):

| Class # | Date        | Description                                                                                           | Notes                                           |
|---------|-------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1       | Jan-28-2025 | Course overview, survey, definitions, biological inspiration, overview and history of field           |                                                 |
| 2       | Feb-4-2025  | Calibration, dynamic range, signal to noise, sensitivity, selectivity, interference                   | Assign journal papers for student presentations |
| 3       | Feb-11-2025 | Basics of detection methods: Electrochemistry, colorimetry, and human perceivable signals             |                                                 |
| 4       | Feb-18-2025 | Sensing and interacting with the environment as a biological organism                                 | Take Home Exam 1                                |
| 5       | Feb-25-2025 | Enzymatic, membrane protein sensors, and signal cascades                                              | Student Research Article Presentations          |
| 6       | Mar-4-2025  | Affinity sensors: antibodies, nucleotides, binding affinity, FRET                                     |                                                 |
| 7       | Mar-11-2025 | Whole cell sensors: bacteria, yeast, mammalian cells                                                  | Midterm Exam                                    |
| 8       | Mar-18-2025 | Spring Break                                                                                          |                                                 |
| 9       | Mar-25-2025 | Microarray and microfluidics-based lab-on-a-chip technology                                           | Select Topics for Literature and Final Paper    |
| 10      | Apr-1-2025  | Biological imaging of complex environments brain, soil, and space                                     |                                                 |
| 11      | Apr-8-2025  | Wearable devices and noise in complex samples                                                         |                                                 |
| 12      | Apr-15-2025 | Biosensing tools for the detection of bacterial and viral clinical, environmental, and food pathogens | Final paper outlines due                        |
| 13      | Apr-22-2025 | Project Day                                                                                           |                                                 |
| 14      | Apr-29-2025 | Measuring complex samples, multi-analyte detection, continuous measurements, reagentless biosensors   |                                                 |
| 15      | May-6-2025  | Implantable sensors, biocompatibility issues                                                          |                                                 |