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ABSTRACT: Elucidating the interaction networks associated with secondary
metabolite production in microorganisms is an ongoing challenge made all the more
daunting by the rate at which DNA sequencing technology reveals new genes and
potential pathways. Developing the culturing methods, expression conditions, and
genetic systems needed for validating pathways in newly discovered microorganisms
is often not possible. Therefore, new tools and techniques are needed for defining
complex metabolic pathways. Here, we describe an in vitro computationally assisted
pathway description approach that employs bioinformatic searches of genome databases, protein structural modeling, and
protein−ligand-docking simulations to predict the gene products most likely to be involved in a particular secondary metabolite
production pathway. This information is then used to direct in vitro reconstructions of the pathway and subsequent
confirmation of pathway activity using crude enzyme preparations. As a test system, we elucidated the pathway for biosynthesis
of indole-3-acetic acid (IAA) in the plant-associated microbe Pantoea sp. YR343. This organism is capable of metabolizing
tryptophan into the plant phytohormone IAA. BLAST analyses identified a likely three-step pathway involving an amino
transferase, an indole pyruvate decarboxylase, and a dehydrogenase. However, multiple candidate enzymes were identified at
each step, resulting in a large number of potential pathway reconstructions (32 different enzyme combinations). Our approach
shows the effectiveness of crude extracts to rapidly elucidate enzymes leading to functional pathways. Results are compared to
affinity purified enzymes for select combinations and found to yield similar relative activities. Further, in vitro testing of the
pathway reconstructions revealed the “underground” nature of IAA metabolism in Pantoea sp. YR343 and the various
mechanisms used to produce IAA. Importantly, our experiments illustrate the scalable integration of computational tools and
cell-free enzymatic reactions to identify and validate metabolic pathways in a broadly applicable manner.

Metabolism is a complex network of interconnected
chemical pathways responsible for an organism’s

subsistence. In addition to macromolecules, small molecules
(metabolites) are produced by cells. Primary metabolites (such
as sugars, amino acids, lipids, nucleotides, and cofactors)
provide energy, serve as building blocks for macromolecules, or
otherwise support core cellular functions. These molecules are
common to many organisms, and their metabolism (biosyn-
thesis and subsequent transformations) is relatively well-
understood. Secondary metabolites are small molecules made
for other purposes, such as signaling and defense. They are
highly diverse and produced by a limited number of organisms.
While our understanding of primary metabolic networks has
come a long way, the pathways by which the vast majority of
secondary metabolites are created or utilized are poorly
defined. For an overwhelming number of microorganisms,
there is little in the way of analytical evidence that a given

pathway is either present or active.1,2 This problem has
expanded with the increase in genome-scale sequencing efforts.
Genetic information on millions of proteins provide hints as to
the existence of metabolic pathways, but robust methods for
deciphering and confirming the metabolic potential hidden in
this information are lacking.3 Large collections of genomic
data, such as the National Center for Biotechnology
Information (NCBI) database, house over 40 M protein
sequences, the majority of which remain uncharacterized.4

Automated annotations, while informative, are often incorrect
and impede facile determination of metabolic capabilities.5,6

The inability to confidently predict the function of an enzyme
and its place in a metabolic pathway has become a consistent
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problem in the study and application of metabolic processes.
Therefore, new approaches are needed for quickly and
accurately elaborating the metabolic capabilities of micro-
organisms.
Current methods for defining metabolic networks can be

slow and labor intensive. Given that methods for cultivation,
pathway expression, and genetic manipulation are not always
possible, conventional experimental approaches to the study of
metabolic processes in newly identified microorganisms can be
a challenging endeavor.7−10 Previous work has sought to
remedy this problem by leveraging computational tools to
reveal the presence and potential function of a protein.11 The
combined use of bioinformatic software and structural data has
resulted in significant strides in predicting enzymatic functions
from uncharacterized proteins.12−14 For example, the addition
of complementary data, such as genomic context and ligand-
docking analysis, has furthered this pursuit by demonstrating
the functionality of multi-input predictions to generate testable
hypotheses.15 Such efforts have continued with recent
advancements such as integrative pathway mapping wherein
the function of a candidate enzyme and its potential metabolic
pathways are predicted by combining information such as
ligand docking, chemoinformatic analysis, genomic context,
and chemical screening in a single analysis.16 While these
efforts have advanced significantly in recent years, determining
the efficacy of these computationally based approaches for
defining protein function and pathway connectivity still
requires experimental verification, and determination of
protein activity remains a major bottleneck for effective gene
annotation and pathway analysis.

To facilitate the definition and confirmation of metabolic
pathways, we sought to develop a simple stepwise method that
initially culls a large subset of proteins related to a pathway,
using in silico methods, and tests the remaining potential
pathways through scalable, in vitro biochemical experiments.
Our combined computational and empirical approach toward
pathway description consists of three steps. First, bioinformatic
analyses of the genome or genome database of interest are
performed using query enzymes described in the literature in
order to find homologous enzymes and identify potentially
complete pathways. In addition to removing the overwhelming
majority of the genome, this bioinformatic step has the benefit
of providing a loosely culled set of enzymes with potential
activity based on homology. Second, ligand-docking simu-
lations are performed with protein crystal structures or
computationally modeled structures to further cull the listed
enzymes to those most likely to interact with their predicted
substrates/intermediates. Third, small-scale, heterologous
expression and in vitro reactions in the crude extract are
performed to examine the contribution of individual enzymes
to the predicted pathways, thus verifying pathway activity
without the need for lengthy purification efforts. The resulting
new understanding of the pathway and its component enzymes
can then be used to refine gene annotation and make high-
quality predictions for the presence of the same pathway in
other organisms by clustering potential enzymes with the
verified subset.
To test the effectiveness of using computationally guided

discovery coupled with experimental validation in crude
extracts, we examined the production of the phytohormone

Figure 1. General metabolic model of the conversion of tryptophan to IAA. Enzymes that catalyze the individual steps are written above the
colored arrows and names of ligands and products underneath their molecular structure. The seven pathways found to produce IAA from
tryptophan are color coded as follows: black, indole pyruvate pathway (IPA); green, tryptamine pathway (Tryp); magenta, tryptophan-dependent
auxin biosynthesis pathway (TDA); red, 2-step indole-3-acetamide pathway (IAP-2); purple, 3-step indole-3-acetamide pathway (IAP-3); yellow,
four-step indole-3-acetamide pathway (IAP-4); blue, indole-acetaldoxime/indole-3-acetonitrile pathway (NIT). Note: pathways IAP-3 and IAP-4
share the use of nitrile hydratase, and pathways IAP-2, IAP-3, and IAP-4 share the use of indole acetamide hydrolase.
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indole-3-acetic acid (IAA) from tryptophan in Pantoea sp.
YR343 (YR343), a root colonizing member of the Populus
deltoides plant-root microbiome.17 This plant regulatory
metabolite can be the product of a complex set of
interconnected metabolic reactions. Notably, Pantoea sp.
YR343 was shown previously to produce IAA in the presence
of tryptophan, but the expected enzymes do not exist in a
common operon.18 This lack of common genomic context
coupled with the annotation of many of the potential candidate
enzymes confounds pathway determination. Further, as with
many products of secondary metabolism, the number of
potential pathways, as well as their interconnected nature,
complicates understanding of flux through the pathway and its
potential control mechanisms. As described below, the
combined computational culling and in vitro verification
approach effectively defines the functional capabilities of the
component enzymes and the tryptophan to IAA pathway in
Pantoea sp. YR343.

■ RESULTS AND DISCUSSION
Bioinformatic Analyses Indicate Complex IAA Metab-

olism in Pantoea sp. YR343. Plants experience complex
interactions with the microbial communities immediately
surrounding and within their root systems.19 The microbes
in these systems are composed of bacteria, fungi, and archaea
capable of influencing plant behavior through chemical
signals.20 Pantoea sp. YR343, a previously sequenced member
of the P. deltoides plant-root community, was found to produce
the plant phytohormone indole-3-acetic acid from tryptophan
through an uncharacterized pathway.17,21 Because some
intermediates are shared by these pathways, there are seven
interconnected but discrete potential pathways for IAA
production from tryptophan (Figure 1).18,22 Prospective IAA
biosynthetic pathways in YR343 were identified following a
BLAST search using 11 different enzymes associated with
these pathways acquired from bacterial and plant genomes
(Table S1). Pantoea sp. YR343 contains at least one enzyme
homologue for each of the known IAA pathways, but the only
complete route from tryptophan to IAA is the IPA pathway, in
which tryptophan is first converted to indole-3-pyruvate, then
indole-3-acetaldehyde, and finally IAA by an aminotransferase
(Am-Trf), an indole pyruvate decarboxylase (IPDC), and an
indole acetaldehyde dehydrogenase (IALDh), respectively

(Figure 1, Figure S1). An E-value of 1 × 10−25 was used as a
cutoff value as it removed all enzymes from the known non-
IAA producer, Escherichia coli. Two of the three nodes in
Pantoea sp. YR343’s potential IAA pathway had multiple
possible enzymes, specifically one aminotransferase, two
IPDCs, and 16 dehydrogenases. Therefore, 32 distinct enzyme
combinations could potentially complete a pathway for
tryptophan to IAA conversion.

Computational Screening of Ligand-Docking Inter-
actions. To cull the list of potential gene products and
resulting enzyme combinations possibly responsible for IAA
production in Pantoea sp. YR343, ligand docking was used as a
means of testing metabolic interactions and removing enzymes
that are unlikely to bind their respective substrates/products.
Given the unavailability of a crystal structure for any of the 19
enzymes, Phyre2 was used to generate homology models and
predict ligand binding sites (Figure 2A).23 Phyre2’s top scoring
model and its predicted ligand-binding site were used as the
basis for analyzing how the enzyme interacts with its potential
substrate/product (Figure 2B,C).
The binding of a ligand in the binding pocket was visually

inspected in n ≥ 5 independent simulations using Vina. A
simple binary designation of binding or nonbinding was then
used to cull enzymes from being part of the IAA conversion
pathway (Figure S2). Phyre2’s 3DLigandSite was used to
determine the position of the binding pocket based on
3DLigandSite’s structural library of homologous peptides with
bound ligands (Figure S3).24 Proteins capable of binding the
expected ligands were kept in the pool of potential enzymes
while those unable to bind were removed (Table S2).
Consequently, as the aminotransferase successfully accom-
modated tryptophan in its binding pocket, it was retained.
Only one of the two IPDCs was capable of binding indole-3-
pyruvate, and 9 of the 16 potential IALDh enzymes were
predicted to bind indole-3-acetaldehyde. Removing those
enzymes that failed the docking step lowered the possible
pathways to nine enzyme combinations.

Pathway Verification. Our first set of in vitro experiments
tested each of the nine predicted IAA enzyme combinations
using heterologously expressed enzymes in clarified crude
extracts (Am-Trf + IPDC + IALDh). Testing each
combination for IAA production revealed that five of the
potential enzyme sets produced IAA in relatively large amounts

Figure 2. Homology modeling and ligand docking to pmi39_00059 IPDC. (A) Representative example of ligand docked to predicted protein in
this case, docked indole-3-pyruvate in IPDC PMI39_00059. (B) Representative example of docking search space (black box) and region predicted
to be binding pocket by Phyre2. (C) Schematic representations of docked ligands. Residues involved in hydrogen bonding interactions are shown
as green dotted lines with the corresponding donor−acceptor distance shown as a ball and stick model. Residues involved in van der Waals
interactions with the ligand are shown with spikes.
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(>12 μg mL−1) while two sets produced relatively low amounts
(<3 μg mL−1), and two other combinations showed no IAA
production (Figure 3A). As expected, the control reactions
containing just host extract derived from either BL21
Star(DE3) or BL21(DE3)pLysS did not produce IAA. Each
node in the IAA pathway was subsequently tested by replacing
it with blank extract from BL21 Star(DE3) (Figure 3B).
Control reactions without a heterologously expressed Am-Trf

were performed using the most active IALDh enzymes as their
production had previously been verified. In all cases, each
pathway showed IAA production in the absence of Am-Trf.
The IAA levels produced in these control reactions are
relatively high and are likely due to the presence of
aminotransferase activity in the E. coli extract. A similar
experiment was performed, but without the presence of the
heterologously produced IPDC. In all cases the absence of

Figure 3. Complete pathways created using single proteins from each enzymatic step to produce IAA. Gene loci are listed in Table S2. (A) Only
enzymes found to be bioinformatically related to a verified IAA enzyme and capable of docking their respective ligand were used to measure the
initial concentration of IAA. Each reaction included a single aminotransferase, a single IPDC, and a single IALDh. (B) Control reactions were
performed to show the importance of individual metabolic steps. BL21 corresponds to an extract replaced with a BL21 Star DE3 extract containing
no heterologously expressed protein. (C) Culled enzymes were tested for activity to determine the rate of false negatives from Vina.
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IPDC prevented IAA production, showing that IPDC is
essential for IAA production in the bacterial extract. Similarly,
the presence of a heterologously produced IALDh was
essential for IAA production as in its absence no detectable
IAA was produced. Of the nine IALDhs that passed the ligand-
docking test, five were able to complete the IAA pathway when
combined with an Am-Trf and IPDC.
It was important to determine if the in silico culling had

eliminated viable enzymes. Accordingly, the remaining IPDC
and seven of the IALDhs removed from the pool of enzymes
during the ligand-docking analysis were similarly cloned,
expressed, and tested for a potential role in IAA production.
When combined with verified IALDhs, the culled IPDC,
IPDC2, showed low IAA production, while two of the seven
potential IALDhs were found to produce IAA at levels
comparable to those of the nonculled enzymes (Figure 3C).
The IALDh reactions showed that ligand docking had a false
negative rate of 28.6%, substantially lower than the false
positive rate of 44.4%.
In order to determine the advantages and effectiveness of

using crude extract preparations for pathway validation,
enzymes with positive activity results in crude extracts were
affinity purified using hexa-histidine tags. From the potential
10 enzymes, 5 were successfully affinity purified and used for
IAA production experiments. Enzymatic combinations were
prepared using AMTRF1, IPDC1, IPDC2, IALDH7, and
IALDH16 (Figure S4). The purified protein reactions showed
the same activity trends as those that employed using crude
extract combinations. Specifically, the presence of IPDC1 was
shown to be necessary for IAA production as its absence halted
IAA production. IALDH16 maintained its relatively high rate
of activity as reactions containing IALDH16 produced 5.66 μg
mL−1 IAA compared to the IALDH7’s 2.04 μg mL−1. The
aminotransferase (AMTRF1) was able to carry out the
expected transamination, though only ∼1 μg mL−1 IAA was
produced (Figure S5).
The plant microbiome consists of a complex network of

chemical communications between a host and its microbial
colonizers. IAA metabolism is highly relevant to plant-microbe
interactions and serves as an important test case in developing
a deeper understanding of both cellular metabolism and
microbial communities. Even an apparently simple, three-step
secondary metabolic pathway can lead to a large number of
potential enzyme candidates and combinations that traditional
methods cannot easily decipher. This work aims to refine an
approach that can define relevant metabolic pathways, thus
decreasing the resources necessary to establish secondary
metabolic pathways.
An initial model for potential IAA metabolic pathways was

created from the literature in order to generate BLAST hits. A
relatively small set of enzymes involved in the known IAA
pathways generated a large list of potential IAA pathway
components in Pantoea sp. YR343. However, comparison of
potential pathway models and BLAST results provided a
valuable culling step as it effectively removed enzymes from the
querying pool and left the IPA pathway as the most likely
generator of IAA. Further, BLAST analyses were key for IAA
pathway description due to the lack of genomic context.
Notably, of the nine enzymes that were eventually verified to
be active in Pantoea sp. YR343’s IAA metabolism, only three
were found to exist within potential operons, all of which were
unrelated to IAA metabolism (Figure S2).

In an effort to further cull the list of potential pathway
components, homology modeling and ligand docking were
employed. These emerging computational tools have the
ability to test a large set of potential candidates by virtue of the
candidate’s homology to the query set or ability to bind the
predicted ligand. This study leverages previous efforts showing
that the combined use of computational methods such as
BLAST, homology modeling, and ligand docking, while
generating false positives and false negatives, is capable of
identifying active proteins.25,26 In this work, we used a readily
accessible program, Vina, to dock ligands to the binding
pockets of the protein homology models predicted by Phyre2
and 3DLigandSite. This process can be applied easily to a large
number of candidate proteins and lends itself to further
optimization and large-scale automation. As with many types
of predictive analysis, binding affinity calculations are only
estimates and may yield errors. Of the 19 proteins that passed
the ligand-docking test, 7 were verified as having relevant
substrate activity. Our analysis of each protein removed from
the pool of enzymes during the ligand-docking step showed
that, of eight culled enzymes tested using Am-Trf1 and IPDC1,
two of the culled IALDhs were found to produce IAA at levels
comparable to those of the enzymes originally selected based
on the ligand docking (Figure 3C). Overall, the presence of
false negatives and positives is expected in this form of analysis,
and our results favor well when compared to similar studies.27

Notably, less stringent conditions are capable of removing
many false negatives by using higher-energy confirmations, but
this practice may exacerbate the acquisition of false
positives.28,29 While these accessible structural modeling and
ligand-docking tools can reduce search space and simplify
downstream in vitro experiments, further refinements are
needed before confidently employing these tools on more
complex pathways.
Future efforts to improve the performance of docking and

homology modeling could lean more on an ensemble-based
docking strategy akin to the similarity ensemble approach
(SEA), in which the binding ability is evaluated by a set of
ligands (e.g., ligands similar to the target substrate/product
and transition state structures), in order to obtain a more
robust prediction of enzyme function.30 Moreover, improve-
ments can also be made by accounting for protein flexibility
and by the use of methods such as molecular dynamics and
quantum chemistry calculations that provide more accurate
descriptions of the protein−ligand interactions.31,32 At the
moment, Vina’s empirical scoring function relies on energetic
factors to assign fitness. The use of automated computational
tools will be essential for evaluation of complex pathways and
for keeping pace with genomic data.
A critical, complementary step in computationally based

pathway determination is experimental validation. Traditional
methods employing genetic manipulation to verify activity are
slow and not practical when analyzing more than one or a few
enzymatic steps. Therefore, we employed a method of
expressing and testing each of the predicted enzymes in a
crude cell extract as a means to increase throughput.
Traditional methods for enzyme characterization employ
heterologous expression followed by affinity purification.
Though affinity purification can lead to more definitive
information, such as in terms of understanding reaction
kinetics, it suffers due to poor success rates and low
throughput.33−35 Even high-throughput, automated systems
result in success rates as low as 20%, thus making affinity
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purification impractical for keeping up with expanding gene
discovery.36,37 In this work, reactions with purified enzymes
were performed to evaluate the efficacy of using crude extracts.
However, of the 9 different enzyme isolations attempted, only
AMTRF1, IPDC1, IPDC2, IALDH7, and IALDH16 could be
successfully purified (Figure S4). With these purified enzymes,
activity trends were similar to those observed when using crude
extracts of the proteins; the absence of IPDC1 still quenched
IAA production, and IALDH16 was still significantly more
active than the other purified aldehyde dehydrogenase
IALDH7. The time-consuming nature of purification is in
contrast to the simplicity and effectiveness of using crude
extracts. Here, the enzymes involved in IAA synthesis could be
identified, expressed in soluble form, and tested without the
need for expansive troubleshooting (Figure S5).
Having defined the IAA pathway components employed by

Pantoea sp. YR343, insights into the origin and function of the
pathway can be gleaned. In the case of the initial amino-
transferase step, the presence of an additional Am-Trf1 was not
required for the reaction to progress. This is indicative of the
well-known promiscuity of aminotransferases and suggests that
the initial step in IAA metabolism is generally preserved among
many organisms and used for other metabolic reactions.38

Further testing of an affinity purified version of the Pantoea sp.
YR343 aminotransferase showed that the enzyme was capable
of effectively catalyzing the reaction but only with high
concentrations of the enzyme (Figure S5). Additionally, we
found that the IAA pathway in Pantoea sp. YR343 has a
dependence on the IPDC PMI39_00059 (IPDC1). The
importance of IPDC is made evident by the high
concentrations of IAA produced by each in vitro reaction
containing IPDC1. This suggests that the predominant IAA
pathway in YR343 utilizes PMI39_00059 and is a good target
for further exploration of Pantoea sp. YR343 IAA metabolism.
This result is substantiated by previous work wherein a full
deletion of the PMI39_00059 gene generated an 80% drop in
IAA.18

The significant number of enzymes capable of catalyzing the
dehydrogenation of indole-3-pyruvate to IAA emphasizes the
need for rapid and effective in vitro tools. Sorting out the 16
different dehydrogenases by traditional genomic deletion
approaches would be prohibitively difficult. While the lynchpin
step in Pantoea sp. YR343’s IAA metabolism is catalyzed by
IPDC, the organism maintains several IALDh capable enzymes
in its genome. Previous proteomic analyses of Pantoea sp.
YR343 found that up to eight IALDhs could be detected at one
time.18 The redundancy of expression may indicate that
Pantoea sp. YR343 maintains multiple pathways for IAA
production. Interestingly, some of the most active enzymes
found in this work were not found to be expressed in previous
studies of Pantoea sp. YR343.18 This may indicate that
environmental conditions can control expression of particular
IALDh enzymes and consequently IAA. Regardless of other
potential substrates for these IALDhs, these multiple reaction
paths can be defined by use of computational predictions when
combined with validation using mixtures of crude enzyme
extracts.
The definition of Pantoea sp. YR343’s IAA pathway

components uncovers its potential evolutionary development.
The ability to find active enzymes, independent of genomic
context, allows identification of those enzymes explicitly
designed to carry out a function as well as those that exhibit
flexibility in regard to substrate recognition. Underground

metabolic functions describe potential side reactions of an
enzyme and can serve as the basis for the emergence of new
metabolic pathways without the need for significant evolu-
tionary jumps.39 In the case of Pantoea sp. YR343, the
prevalence of specific enzymatic components related to IAA
production and simultaneous lack of others show the potential
for underground metabolic reactions to generate novel
metabolic functions. For Pantoea sp. YR343, the genes
responsible for the three key conversion steps exist outside a
common operon. IAA metabolism may therefore be an
opportunistic phenotype generated through the crossover of
a single gene in the form of IPDC or the mutation of a
homologous IPDC gene. Using a crude extract approach to
explore the metabolic potential of YR343, we were able to
discern these promiscuous functions and provide evolutionary
context for the development of IAA metabolism in Pantoea sp.
YR343.
This work has shown a rapid and scalable approach allowing

for the identification and verification of active metabolic
pathways in an organism by empirically generating functional
annotations. The use of crude cell extracts accurately predicted
metabolic pathways despite the functional redundancy and lack
of genomic context for the enzymes involved in IAA
metabolism in the organism Pantoea sp. YR343. We expect
that improvements to computational tools will enhance the use
of predictive analysis and the throughput of enzymatic
discovery. As the breadth of genomic data continues to
expand so too will the need to study such data without
genetically tractable or even culturable organisms. The work
presented demonstrates the effectiveness of crude extracts as a
discovery and validation tool for both well-defined and
underground metabolisms. Further, the development of high-
throughput DNA synthesis and cell-free expression from
eukaryotic cells could allow similar rapid explorations of
metabolic pathways found in eukaryotic genomes and
metagenomes. In vitro enabled analysis such as that presented
in this work can help facilitate such studies by providing an
accurate and rapid method of testing large search spaces in
short amounts of time.

■ METHODS
Pathway and Gene Identification. Following a literature search,

a general model of IAA production from L-tryptophan was created
from a set of query proteins in order to perform a BLASTP search
against the Pantoea sp. YR343 translated genome (Table S1, Figure
2).40 At least one BLAST hit from the literature-derived query
proteins was used to designate a protein as being related to IAA
biosynthesis in Pantoea sp. YR343. Multiple queries were used when
possible. As the goal of the BLAST analysis was to create a subset of
proteins from the genome of interest for further analyses, a single
verified enzyme was deemed sufficient for the initial annotation. The
BLAST analysis was performed by compiling a database of query
proteins to BLAST against the Pantoea sp. YR343 genome. Pantoea
sp. YR343’s genome was downloaded from GenBank. The output was
parsed by searching for potentially complete pathways in the genome
using the general model created from the query sequences. The final
set of pathways was obtained after setting the E-value cutoff at 1 ×
10−25 in order to eliminate known non-IAA producers, in this case,
Escherichia coli.

Ligand-Docking Simulations. Protein homology models were
created using the Protein Homology/analogy Recognition Engine V
2.0 (Phyre2) by providing the target sequence from Pantoea sp.
YR343 (Table S2).41 The top rated models were used, except in cases
of low template identity, in 3DLigandSite to predict the substrate
binding sites if this information was not immediately available from
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the template protein structures.24 AutoDock Vina version 1.1.2 was
employed to predict the interactions of each protein and its potential
binding partners.42 The search volume was set to 30 × 30 × 30 Å3

centered around the binding site predicted by 3DLigandSite; the
exhaustiveness was set to 8, and maximum energy difference was set
to 3 kcal mol−1 for each protein−ligand combination (Figure 2A).
Successful binding partners were determined based on both the
docking poses and docking score rankings (i.e., binding to the ligand-
docking site predicted by 3DLigandSite); a set of binding and
nonbinding representative examples can be seen in (Figure S3). The
lowest-energy pose was used determine binding to the predicted site.
Proteins predicted to bind their putative substrates were subsequently
used for biochemical experiments and culled if no docked poses were
identified by Vina.
Enriched Extract Preparation. One Shot TOP10 Chemically

Competent E. coli (ThermoFisher) was used as the cloning strain for
plasmid preparation. Each potentially IAA-related enzyme was
amplified from Pantoea sp. YR343 and inserted into the NdeI/SalI
site of pET-30a(+) growing on kanamycin (50 μg mL−1) (Table S3).
All primers were designed using NEBuilder (New England Biolabs)
and purchased from IDT. Crude cell-free extracts were prepared by
culturing E. coli BL21 Star (DE3) in 2×YPTG (16 g L−1 tryptone, 10
g L−1 yeast extract, 5 g L−1 NaCl, 7 g L−1 KH2PO4, 3 g L−1 K2HPO4,
18 g L−1 glucose). Cultures of 50 mL volumes were grown using 250
mL baffled flasks at 37 °C shaking at 250 rpm. Induction was
performed using 0.1 mM IPTG at OD600 = 0.6−0.8 and harvested
after growing for 4 h at 30 °C. No antibiotics were used during
growth. Each culture was harvested by centrifugation at 5000g for 10
min and washed twice with S30 buffer (2 g L−1 magnesium acetate,
14.05 g L−1 potassium glutamate, 0.154 g L−1 dithiothreitol (DTT),
and 1.81 g L−1 Tris-acetate, pH 8.2). After the final wash, the cell
pellets were weighed, flash-frozen in liquid nitrogen, and stored at
−80 °C. Cell extracts were made by thawing and resuspending the
pellet in 0.8 mL of S30 buffer per gram of wet cell weight before
sonicating with 530 J mL−1 of suspension at 50% amplitude while in
ice water. After sonication, the lysed cells were centrifuged twice at 4
°C for 10 min at 21 100g. The clarified lysate was flash-frozen, and
stored at −80 °C. The BL21 Star (DE3) strain was used as the base
expression strain. Plasmids that did not produce soluble protein in
BL21 Star (DE3) were moved to BL21(DE3)/pLysS but were
otherwise prepared in the same manner. Both pmi39_00977 and
pmi39_04201 successfully expressed in BL21(DE3)/pLysS. After
preparing each extract, 8 ng of the soluble crude extract was loaded
onto an SDS-PAGE gel in order to verify expression of each enzyme.
His-tag purified enzyme production required varying growth
conditions outlined in the Supporting Information (Figure S4).
In Vitro Reactions. In vitro IAA synthesis reactions were prepared

by combining 50 mM L-tryptophan and ∼5 mg mL−1 of each
enriched extract in a 30 μL volume. Control reactions that omitted
putative reaction steps had volume shortage made up using cell extract
from E. coli. The reactions were then placed in a 28 °C incubator
shaking at 250 rpm for 24 h. Following incubation, each reaction was
placed on ice and deactivated by adjusting the pH to 2.0 with HCl.
IAA was extracted by the addition of 500 μL of ethyl acetate and
vigorously vortexed. Each sample was then incubated on ice for 5 min
and briefly centrifuged to separate aqueous and organic layers. A 400
μL portion of the organic layer was removed and dried in an analytical
vial with argon gas. Vials were stored at 4 °C before analysis. Stored
samples were resuspended in 500 μL of water before injection.
Reaction components and conditions for purified enzyme reactions
are described in detail in Figure S5.
Analysis of IAA Production. Quantitative analysis was

performed by injecting 100 μL of suspended reaction into an Agilent
1260 HPLC instrument equipped with an Agilent ZORBAX Eclipse
Plus C18 column and a diode array detector set at 265 nm. The
mobile phase comprised A, 0.08% trifluoroacetic acid in water; and B,
acetonitrile. Analytes were eluted at a flow rate of 1 mL min−1 with
the initial eluent composition of 5% B held for 3 min, followed by a
step to 30% B, a 5 min linear gradient to 45% B followed by a 5 min
hold, a step to 75% B followed by a 1 min hold, and a step to 5% B

followed by a 6 min hold. A calibration curve was prepared using pure
IAA. Representative spectra are shown in the Supporting Information
(Figure S6). All chemicals were acquired from Sigma-Aldrich. Error
bars were calculated using the standard deviation from n ≥ 3
independent reactions.
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